黑基网 首页 资讯 科技眼 查看内容

谷歌发布“AutoML”新技术 人工智能可自我创造

2017-5-25 14:50| 投稿: heilong916 |来自: 互联网

摘要: 今年5月,谷歌揭示了人工智能发展的一种主要新方法,它被称为“自动机器学习(AutoML)”,它允许人工智能成为另一个人的架构师,并在无需人工工程师输入的情况下进行自我创造。AutoML项目专注于深度学习,一种涉及 ...

今年5月,谷歌揭示了人工智能发展的一种主要新方法,它被称为“自动机器学习(AutoML)”,它允许人工智能成为另一个人的架构师,并在无需人工工程师输入的情况下进行自我创造。

AutoML项目专注于深度学习,一种涉及到通过神经网络层传递数据的技术。创建这些层是很复杂的,因此谷歌的想法是创造能够自我创造的人工智能。

谷歌的这个想法,就是让现有的人工智能创建自己的代码层,而事实证明,它比它的人类技术人员更快、更有效地完成了它的工作。

该公司在谷歌研究博客上解释道:“在我们的方法中(我们称其为“AutoML”),一个控制器神经网络可以提出一个“儿童”模型架构,然后在一个特定的任务中对其进行训练和评估。然后,该反馈被用来通知控制器如何改进下一轮的提案。我们重复这个过程数千次——生成新的架构,测试它们,并将反馈给控制器来学习。”

从表面上看,这种技术听起来像是可能导致奇异性的失控演变的那种事情。但实际上,谷歌正利用它将机器学习令人不可思议的力量交到普通人手中。

从本质上讲,使用神经网络来设计其他神经网络的 AutoML策略是很熟悉的;通过编写程序来编辑其他程序的代码是机器学习的定义。

AutoML的新功能是,在设计神经网络的过程中,它开始进行干预;自动化并不只是简单地改进已经存在的简单模型,而是首先选择那些模型,然后再对它们进行再优化。

通过这种方式, AutoML是一个功能更全面的版本,它通常被认为是正常的“ML”。

从理论上讲,AutoML方法应该能够设计出更有效的神经网络,它不仅可用于解决当前的简单问题,也可用于帮助解决对人类来说不可思议的问题。

AutoML的主要目标并不是要将人类从开发过程中剥离出去,甚至也不是要开发全新的人工智能,而是让人工智能继续以我们多年来一直享受的速度来改变世界。

对于一个拥有丰富人才的行业来说,编码神经网络的难度正成为一个问题; AutoML是为了降低未来机器学习的门槛,至少对于最简单和最常见的应用来说是这样。

短期内,AutoML并不能设计出更好的人工智能。尽管它确实可以,但它可以帮助打开一个急需人才的行业。

AutoML并没有谷歌顶级工程师的理论和数学才华,但普通人无法让谷歌的顶尖工程师解决他们自己的问题。

有了AutoML,谷歌正在创造普通人可以掌握的AI工程师。(小狐狸)

小编推荐:欲学习电脑技术、系统维护、网络管理、编程开发和安全攻防等高端IT技术,请 点击这里 注册黑基账号,公开课频道价值万元IT培训教程免费学,让您少走弯路、事半功倍,好工作升职加薪!

本文出自:http://www.toutiao.com/a6423889095131463938/

免责声明:本文由投稿者转载自互联网,版权归原作者所有,文中所述不代表本站观点,若有侵权或转载等不当之处请联系我们处理,让我们一起为维护良好的互联网秩序而努力!联系方式见网站首页右下角。


鲜花

握手

雷人

路过

鸡蛋

相关阅读

最新评论


新出炉

返回顶部